A NEW CLAISEN APPROACH TO THE STEREOSPECIFIC INTRODUCTION OF A STEROID SIDE CHAIN AT C-20. A SIMPLE SYNTHESIS OF 20-EPICHOLESTEROL VIA THE \$-FACE REARRANGEMENT Koichi MIKAMI, Kazuya KAWAMOTO, and Takeshi NAKAI* Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152 A simple synthesis of 20-epicholesterol is described which relies on the unprecedented β -face Claisen rearrangement of an $E-\Delta^{17\,(20)}$ -16 β -vinyloxy steroid leading exclusively to the "unnatural" 20S chirality. The stereospecific introduction of steroid side chains onto the basic steroid nucleus has attracted a good deal of current interest, and hence a number of methodologies have been developed. Recently Tanabe and Hayashi have reported a highly stereocontrolled approach to either cholesterol (1) or 20-epicholesterol (2) that relies on the α -face Claisen rearrangement (the Carroll variant) as illustrated by Eq. 1. We now report, for the first time, that the Claisen rearrangement is also feasible even on the sterically congested β -face (Eq. 2) 4) by employing the enol ether variant (the Saucy-Marbet variant) within the context of the synthesis of 20-epicholesterol (2) from the readily available 16α , 17α -epoxypregnenolone (3). Protection of 3^{6} as the 3α , 5α cyclo ether derivative (4) followed by the Wharton reaction according to the reported procedure $^{3)}$ provided the E allylic alcohol 5 (ca. 60%), along with the Z isomer 6 (ca. 15%). Oxidation of the major $\it E$ isomer $\it 5$ was best carried out with manganese dioxide $\it ^7$) to give quantitatively the E enone 7 which was then reduced with lithium aluminum hydride to afford 97% of the 16ß alcohol 8 as a single stereoisomer at C-16.2) The crucial step for the introduction of the S configuration at C-20 was first attempted by the ester enolate Claisen rearrangement (the Ireland variant) 8) using the 16ß acetoxy derivative 9 as a substrate. Not surprisingly, the ester 9 failed to undergo the β -face rearrangement apparently due to the steric crowding in the transition state(s). In contrast, the less sterically demanding enol ether Claisen variant was found to proceed cleanly. Thus, the alcohol 8 was heated in ethyl vinyl ether in the presence of mercury(II) acetate at 85 °C for 22 h, and then at 125 °C for 4.5 h to give the rearranged 20S aldehyde 10 in 84% isolated yield as a single stereoisomer at C-20. The stereospecific generation of the 20S configuration is ascribable to the chairlike transition state involved in the β -face process (see Eq. 2). The 20S configuration of 10 was confirmed through its NMR comparison with the 20R isomer (13) prepared from the 16 α alcohol (5) via a similar but α -face Claisen process(vide infra). 9) The most definitive distinguishing feature of the two isomers is the NMR chemical shift for the C-21 signals (δ 1.16 for 10 and δ 1.07 for 13). Construction of the epicholesterol side chain was completed as follows. The Wittig reaction of the aldehyde 10 with triphenylphosphonium isobutylide 10) gave the diene 11. Catalytic hydrogenation of the diene 11 with platinum oxide in ethyl acetate from the α -side 11) fixed the 17R configuration and afforded the known 3α , 5α cyclo ether derivative (12) of the epicholesterol in 90% yield, whose NMR data were in agreement with the reported values 2) (δ 0.81 for the Me-21). Treatment of 12 with aqueous acid in dioxane gave 20-epicholesterol (2) 12) as previously reported. 2) The cyclo ether derivative (14) of cholesterol (1) was synthesized in a similar way from the 16α alcohol (5). The enol ether Claisen rearrangement under the same conditions as described above afforded 68% yield of the 20R aldehyde 13, 9) which was then converted to 14 in 81% overall yield. The NMR data of 14 were in agreement with the reported data (80.91) for the Me-21). Interestingly, control experiments showed that the α -face rearrangement of 5 was significantly faster than the β -face rearrangement of 8 as expected. Thus, these results of this work demonstrate that the enol ether Claisen variant proceeds on either the α - or β -face to create either desired chirality at C-20, thus serving as a key stereodirecting process in steroid side chain synthesis in general. The authors are grateful to Mr. K. Kushida (Analytica Corp.) for the 300-MHz NMR measurements. This research was partially supported by the Grant-in-Aid for Special Project Research from the Ministry of Education, Science and Culture. ## References - 1) For a review, see: D. M. Piatak and J. Wicha, Chem. Rev., 78, 199 (1978). - 2) For leading more recent references in this area, see: N. R. Schmuff and B. M. Trost, J. Org. Chem., 48, 1404 (1983). - 3) M. Tanabe and K. Hayashi, J. Am. Chem. Soc., $\underline{102}$, 862 (1980). In their work, 20-epicholesterol was synthesized via the α -face Carroll rearrangement of the isomeric Z-allylic β -ketoester. - 4) To our best knowledge, only two reports dealing with β-face reactions for stereocontrol at C-20 have appeared so far: B. M. Trost and T. R. Verhoeven, J. Am. Chem. Soc., 100, 3435 (1978), and their earlier papers [Pd-mediated method]; Ref. 2 [organocuprate-mediated method]. - 5) G. Saucy and R. Marbet, Helv. Chim. Acta, 50, 1158, 2091 (1967). - 6) Purchased from Sigma Chem. Co., St. Louis, MO 63178, USA. - 7) S. V. Kessar and A. L. Rampal, Tetrahedron, <u>24</u>, 887 (1968). The oxidation of <u>5</u> and a related alcohol has been problematic. The chromate-based oxidations have been reported to lead to more or less contamination with the <u>Z</u> enone: M. Koreeda, Y. Tanaka, and A. Schwartz, J. Org. Chem., <u>45</u>, 1172 (1980). For a modified Moffatt-type oxidation of <u>5</u> with careful workup, see: Ref. 2. - 8) R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc., <u>98</u>, 2868 (1976). - 9) 10 (oil): NMR (300 MHz, CDCl $_3$, TMS), δ 0.87 (s, 3H, Me-18), 1.05 (s, 3H, Me-19), 1.16 (d, J=7.0 Hz, 3H, Me-21), 2.79 (br. t, 1H, 6 α -H), 3.34 (s, 3H, OMe) 5.39 (br. m, 1H, 16-H), 9.68 (t, J=3.0 Hz, 1H, CHO); TLC (silica gel, hexane/EtOAc = 20 : 1), R_f = 0.32 13 (oil): NMR (300 MHz, CDCl $_3$, TMS), δ 0.82 (s, 3H, Me-18), 1.03 (s, 3H, Me-19), 1.07 (d, J=7.0 Hz, 3H, Me-21), 2.77 (br. t, 1H, 6 α -H), 3.32 (s, 3H, OMe), 5.31 (br. m, 1H, 16-H), 9.63 (t, J=3.0 Hz, 1H, CHO); TLC (silica gel, hexane/EtOAc = 20 : 1), R_f = 0.26. - 10) S. G. Wyllil and C. Djerassi, J. Org. Chem., 33, 305 (1968). - 11) R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, and W. M. MaLamore, J. Am. Chem. Soc., 74, 4223 (1952); H. M. E. Cardwell, J. W. Cornforth, S. R. Duff, H. Holtermann, and R. Robinson, J. Chem. Soc., 1953, 361. - 12) Koreeda and co-workers have reported that 20-epicholesterol shows a significant in vitro inhibitory activity in the conversion of cholesterol to pregnenolone: cf. M. Koreeda and N. Koizumi, Tetrahedron Lett., 1978, 1641. (Received October 23, 1984)